Jobs

Here you will find job advertisements from the wind energy sector. Please use the input form to publish job advertisements.

31/01/20
PhD position on signal processing and AI for condition monitoring of wind turbine drivetrains
Organization:
Vrije Universiteit Brussel
Location:
Brussels, Belgium
Application deadline:
31/01/20
Application link:
Supervisors:
Primary supervisor: Prof. Jan Helsen
Secondary supervisor: ir. Cédric Peeters

The team
The VUB Acoustics and Vibrations Research group and VUB AI-group work closely together in the field of machine monitoring. Novel signal processing and AI methods are developed specifically targeted at the prediction of failures and accurate assessment of their progression. In this context we work closely together with leading companies: Atlas Copco, BASF, ZF, …
The team has a core focus on wind energy in the context of OWI-lab. There we have ongoing research projects with MHIVOW, ZF Wind Power, Parkwind, … Our multi-disciplinary approach allows us to bring methodological advancements all the way to application in industry.

Full Project Detail
The process of tracking the health of machinery is commonly known as condition monitoring. Typically, it involves recording data, analyzing this data, and then inspecting the resulting indicators for potential significant changes that could be symptomatic of a defect. Incorporating condition monitoring in the Operations and Maintenance of a company opens the door for predictive maintenance. At VUB we can offer help to companies in this condition monitoring process by performing specialized data analysis of their machines. This can be through the use of vibrations, rotation speed, acoustics, or other sources of measurable information. All these measurements typically produce a lot of complex data, therefore we investigate new ways how we effectively and efficiently analyze this data to provide an as accurate as possible health summary of the machine. Next to data analysis, there is thus also a strong focus on big data processing, automation of the result interpretation using machine learning, and keeping up with the Internet of Things trend of increased sensorization and data acquisition.

PhD project description
The research focuses on developing new data analysis tools for condition monitoring of wind turbines and rotating machinery in general. The work will include implementing existing concepts in code, but also developing novel ideas for signal processing. There is a strong emphasis on bearing and gear monitoring. In addition to the development of novel methodologies for signal analysis, we also strive to deliver actionable information, relevant to the industry. Thanks to our strong connections with several industrial partners, we have the opportunity to work on interesting issues, but this means we also need to disseminate our results. Therefore, your work will go beyond the development of new methods and will also include expanding our data analysis platform with your new tools and combining your new tools with state-of-the-art machine learning approaches. The latter is accomplished by our collaboration with the Artificial Intelligence group of VUB.

We offer the opportunity to work in a very inspired, motivated and enjoyable research group that is looking to expand. The focus is also not purely on academic aspects thanks to our industrial collaborations. Therefore, you will inevitably also gain significant industrial experience and insight into how companies function and how to operate together with them. On top of the meaningful academic and industrial experience that you will gain, we encourage every PhD student to go and present their work at international conferences abroad.

Entry requirements
Applicants should preferably have:
  • Master degree in Mechanical, Electrical, or Mathematical engineering
  • A relevant Master’s degree and/or experience in one or more of the following will also be an advantage: wind turbine dynamics, signal processing, machine learning techniques, Bayesian statistics, ...
  • Background or interest in programming (Matlab, python, java, C/C++, …)
  • Proficiency in English is a plus
Interested candidates are recommended to apply as soon as possible.

Funding information
We offer an international open working environment stimulating personal development through international courses, many opportunities to attend and present at conferences abroad. Possibility to spend part of the research abroad. A generous competitive salary, public transport coverage and health insurance. The PhD normally lasts 4 years.

Contact details
Mail to jan.helsen@vub.be ; cedric.peeters@vub.be

How to apply
All applications should be made through e-mail (jan.helsen@vub.be)
02/02/20
Research Associate in Wind Turbine Control
Organization:
University of Stuttgart
Location:
Stuttgart, Germany
Application deadline:
02/02/20
Application link:

About the Institute


Stuttgart Wind Energy (SWE) is part of the Institute of Aircraft Design and a dedicated wind energy institute since 2004. Our research focus includes wind measurement technology, energy forecasting, sound emission estimation, design and modelling of floating systems, electromechanical interactions, control and simulation of on-/offshore turbines and farms. SWE’s Control and Simulation (CoSi) group carries out research on various aspects of the wind turbine system. We design, simulate and optimize models and controllers to reduce LCOE and increase the penetration of wind energy in the energy mix. We use commercial as well as in-house developed simulation codes. In future, we will use the WindForS test site - equipped with two research turbines - to carry out field tests of the developed control strategies.

Job Description


You will develop control algorithms and perform dynamic simulations on a turbine and plant level from conception to application.

You will contribute to tasks within research projects of the CoSi group, as follows:

  • Development of baseline and advanced control strategies (e.g. IPC, lidar assisted control etc.) for single turbines and wind farms

  • Simulation of the aeroelastic response using state-of-the-art software (FAST, Bladed, Simpack)

  • Development and maintenance of in-house software tools (mainly in MATLAB, Python and Fortran)

  • Contribution to conception and management of national and international research projects. This includes reporting and writing research publications

  • Implementation on controller hardware (PLC) for field testing purposes


After the initial period of getting familiar with our projects, workflows and tools, we offer and encourage you to pursue a PhD within the related research areas.

In addition to the research, you are expected to support ongoing teaching activities as well as contributing to administrative tasks.

Candidate’s Profile


You should have a Master´s degree in engineering or a similar degree in the fields of control engineering, mechanical engineering, aerospace engineering, mechatronics, wind energy or similar. It is important that you are application-oriented and at the same time have a strong theoretical background in loads and control of wind turbines.

You are required to have:

  • Good understanding of wind turbine dynamics

  • Experience with aeroelastic simulations (FAST, Bladed or similar)

  • Proficiency in MATLAB/Simulink

  • Ability to work both independently as well as cooperate in a team

  • Personal motivation to answer scientific questions

  • Basic knowledge of control engineering and wind turbine/farm control

  • Fluency in communication and reporting in English and basic knowledge of German


It would beneficial for your application and your work here to have:

  • Experience in design and tuning baseline and advanced wind turbine/farm controllers

  • Experience with code revision tools (git, hg or similar) and collaborative software development

  • Programming skills in Python, C++ or Fortran



What we offer



  • An internationally recognized, young and motivated team of researchers

  • A versatile and interdisciplinary job and the possibility to pursue a PhD

  • An environment to build your own research topic with strong support from the SWE team

  • Flexible working environment

  • Opportunities to support your own professional and academic growth

  • Contacts to international research institutions and industry in the field of wind energy

  • Opportunities to participate in international conferences, workshops and collaboration tasks (e.g. IEA Wind Tasks 32 and 37)

  • A salary according to TV-L E13 with a full-time contract


All interested candidates irrespective of age, gender, race, disability, religion or ethnic background are encouraged to apply. Applicants with disability and with equal qualifications will be given preference.

Contact


Please send your electronic application in English or German including a motivation letter, curriculum vitae, transcript of grades, job references, and an electronic copy of your MSc thesis and relevant publications
07/02/20
Research Assistant (m/f/d) in Structural Dynamics and Digitalization in the Context of Onshore Wind Energy
Organization:
ForWind, Institute of Structural Analysis (ISD), LEIBNIZ UNIVERSITY HANNOVER
Location:
Hannover, Germany
Application deadline:
07/02/20
Application link:
Research Assistant (m/f/d) in Structural Dynamics and Digitalization in the Context of Onshore Wind Energy

(Salary Scale 13 TV-L, 100 %)

The Institute of Structural Analysis (ISD) invites applications for the position of a Research Assistant (m/f/d) in structural dynamics and digitalization in the context of onshore wind energy (Salary Scale 13 TV-L, 100 %) to be appointed from 01.05.2020. The position is initially limited until 31.12.2022, with a possible extension. A promotion within the scope of the advertised position is expressly desired.

RESPONSIBILITIES AND DUTIES

The tasks include assistance in research and teaching (tutorial). The research activities shall be carried out within the research project PreciWind. Within this project, a mobile thermographic measuring system for recording and analyzing the dynamic flow behavior on operating wind turbine’s rotor blades is under development. The system will be used to quantify the aerodynamic performance of wind turbines. With a focus on the current state of the art, the research assistant will pursue the concept of a virtual representation of the measuring system. A virtual representation of the wind turbine has to be developed in detail and the entire measurement activities have to be accompanied by means of parameterized simulation models for the effective positioning and adjustment of the novel measurement system under consideration of relevant mechanical aspects.

By employing the software DeSiO (Design and Simulation Framework of Offshore Support Structures), existing calculation methods are to be applied, e.g. multi-body systems, finite element method and boundary element method. Parallel to the simulation activities, the research assistant will carry out in situ data measurements and willy apply existing methods for system identification and condition estimation in a practical way. The research results will be published in international journals.

EMPLOYMENT CONDITIONS

The position requires a level of education which corresponds to completed university studies in civil engineering, mechanical engineering or a comparable field of engineering. Previous knowledge in the field of numerical methods, mechanics, modelling and simulating as well as programming are required. The candidate should be able to work in a team.

The position is suitable for occupation by part-time workers, provided that it can be covered to the full extent.

As an equal opportunities employer, Leibniz University Hannover intends to promote women and men. For this reason, suitably qualified women are specifically invited to apply.

Preference will be given to equally qualified applicants with disabilities.

Please send your application, including your supporting documents, with the reference number 101 by 07.02.2020 in electronic form to sekretariat@isd.uni-hannover.de.

or via postal mail to:

Gottfried Wilhelm Leibniz University Hannover
Institute of Structural Analysis
Prof. Dr.-Ing. habil. R. Rolfes
Appelstr. 9A
30167 Hannover
Germany

For further information, please contact:
Prof. Dr.-Ing. habil. R. Rolfes (Tel.: +49 511 762-3867)
Dr.-Ing. C. Gebhardt (Tel.: +49 511 762-2359).

Information on the collection of personal data according to article 13 GDPR can be found at
https://www.uni-hannover.de/en/datenschutzhinweis-bewerbungen/.
31/05/20
two-way meso–micro coupling for wind farm planning, forecasting and nowcasting
Organization:
KU Leuven
Location:
Leuven, Belgium
Application deadline:
31/05/20
PhD Position on two-way meso–micro coupling for wind farm planning, forecasting and nowcasting

Promoter: J. Meyers

Contact: Prof. J. Meyers, Department of Mechanical Engineering, Celestijnenlaan 300A, B3001 Leuven, Belgium. T: +32(0)16 322502.
Google Scholar

Apply using the KU Leuven online application platform. (Applications by email are not considered!)


This PhD position is part of the FREEWIND project (Development of a Fast REsourcE planning and forecasting platform for the Belgian offshore WIND zones), financed by the Flemish Energy Transition Fund, which aims to encourage and support energy research and development supporting the transition to a carbon-neutral society. The project team consists of nine researchers and supporting staff. Three PhD students will be recruited at the start of the project and work full time for four years (the current position is one of them). A data scientist and ICT engineer, will work part time on the project. The project is closely aligned with another funded project on two-way meso–micro coupling for wind farm optimization and design, carried out by two PhD students at KU Leuven. The project is led by Prof. Johan Meyers (Turbulent Flow Simulation and Optimization (TFSO) research group; department of Mechanical Engineering) and Prof. Nicole van Lipzig (Regional Climate Studies (RCS) research group; department of Earth and Environmental Sciences). Within the TFSO and RCS group there is ample of expertise on the modelling tools needed for the FREEWIND project. The current PhD position will be supervised by Prof. J. Meyers and co-supervised by Prof. N. van Lipzig.


BACKGROUND

Offshore wind energy plays a central role in Europe’s transition to a carbon-free energy system. In Europe, numerous offshore wind zones surpass 1GW in capacity, several of which are under construction. At these sizes, wind farms interact with the atmospheric boundary layer and the local meso-scale weather system. Only very recently, the importance of these effects for wind-farm operation have been recognized. For instance for the combined Belgian–Dutch offshore cluster, the effect of wind-farm induced gravity-wave systems on the overall Annual Energy Production can be up to 6% (less production), and up to 30% on hourly production. Two-way interaction with other meso-scale systems, such as land–sea breeze or convection cells may also be important, but this has not yet been investigated to date. These effects are not included in current windfarm planning and forecasting tools. The FREEWIND project aims at developing a planning and forecasting platform that includes mesoscale feedback. A central case study will be centered around Belgian’s offshore wind zones. The platform is made available open-source through a dedicated web interface that allows for online scenario analysis.


PHD PROJECT DESCRIPTION

Research: To date, the main engineering paradigm with respect to the wind resource is a one-way approach, in which wind turbines are considered too small to affect the local wind climate. Current engineering tools for wind-farm planning are based on this approach. The development and open availability of fast models that include two-way coupling will be paramount for the efficient development and future exploitation of Europe’s large offshore wind farms. For this reason, KU Leuven developed an atmospheric perturbation model (Allaerts & Meyers, JFM 2019). The PhD will work on extending this model to take into account nonhomogeneous conditions, and baroclinic conditions. Moreover, a dynamical version of the model will be developed. The micro-scale model SP-Wind, a Large-Eddy Simulation code developed at KU Leuven, will be used to obtain highly detailed datasets for the development and validation of the atmospheric perturbation model. To this end, the current version of SP-Wind, will be slightly extended to include shallow boundary layers and effects of baroclinicity in the free atmosphere. The ultimate goal of this PhD is to develop and validate an engineering model for the planning (5 years to 20 years), forecasting (1 day to 7 days) and nowcasting (30 min to 1 day) ranges thereby including two-way coupling on all these timescales.


Timeline and remuneration: Ideal start time is March 1st 2020, but earlier and later starting dates can be negotiated. The PhD position lasts for the duration of four years, and is carried out at the University of Leuven. During this time, the candidate also takes up a limited amount (approx. 10% of the time) of teaching activities. The remuneration is generous and is in line with the standard KU Leuven rates. It consists of a net monthly salary of about 2000 Euro (in case of dependent children or spouse, the amount can be somewhat higher).



CANDIDATE PROFILES

Candidates have a master degree in one of the following or related fields: fluid mechanics, aerospace or mathematical engineering, numerical mathematics, or computational physics. They should have a good background or interest in fluid mechanics, simulation, optimization, and programming (Fortran, C/C++, MATLAB, Python, …). Proficiency in English is a requirement. The position adheres to the European policy of balanced ethnicity, age and gender. Both men and women are encouraged to apply.


APPLICATION

To apply, use the KU Leuven online application platform (applications by email are not considered) Please include:
a) an academic CV and a PDF of your diplomas and transcript of course work and grades
b) a statement of research interests and career goals, indicating why you are interested in this position
c) a sample of technical writing, e.g. a paper with you as main author, or your bachelor or master thesis
d) two recommendation letters

d) a list of possible additional references (different from recommendation letters): names, phone numbers, and email addresses
e) some proof of proficiency in English (e.g. language test results from TOEFL, IELTS, CAE, or CPE)



Please send your application as soon as possible and before May 31st, 2020 at the latest.
Decision: when a suitable candidate applies.
Starting date: candidates can start immediately. Start preferable Spring 2020.


31/07/20
Postdoctoral position on condition monitoring for wind turbine drivetrains
Organization:
Vrije Universiteit Brussel
Location:
Brussels, Belgium
Application deadline:
31/07/20
Application link:

Supervisors:

Primary supervisor: Prof. Jan Helsen

The team

The VUB Acoustics and Vibrations Research group and VUB AI-group work closely together in the field of machine monitoring. Novel signal processing and AI methods are developed specifically targeted at the prediction of failures and accurate assessment of their progression. In this context we work closely together with leading companies: Atlas Copco, BASF, DEME, …

The team has a core focus on wind energy in the context of OWI-lab. We have ongoing research projects with MHIVOW, ZF Wind Power, Parkwind, … Our multi-disciplinary approach allows us to bring methodological advancements all the way to application in industry.

Full Project Detail

The process of tracking the health of machinery is commonly known as condition monitoring. Typically, it involves recording data, analyzing this data, and then inspecting the resulting indicators for potential significant changes that could be symptomatic of a defect. Incorporating condition monitoring in the Operations and Maintenance of a company opens the door for predictive maintenance. At VUB we can offer help to companies in this condition monitoring process by performing specialized data analysis of their machines. This can be through the use of vibrations, rotation speed, acoustics, or other sources of measurable information. All these measurements typically produce a lot of complex data, therefore we investigate new ways how we effectively and efficiently analyze this data to provide an as accurate as possible health summary of the machine. Next to data analysis, there is thus also a strong focus on big data processing, automation of the result interpretation using machine learning, and keeping up with the Internet of Things trend of increased sensorization and data acquisition.


Postdoc job description

The research focuses on developing new data analysis tools for condition monitoring of wind turbines and rotating machinery in general. The work will include implementing existing concepts in code, but also developing novel ideas for signal processing. There is a strong emphasis on drivetrain monitoring (bearings, gears, generator,… through vibrations, currents, …) . In addition to the development of novel methodologies for signal analysis, we also strive to deliver actionable information, relevant to the industry. Thanks to our strong connections with several industrial partners, we have the opportunity to work on interesting issues, but this means we also need to disseminate our results. Therefore, your work will go beyond the development of new methods and will also include expanding our data analysis platform with your new tools and combining your new tools with state-of-the-art machine learning approaches. The latter is accomplished by our collaboration with the Artificial Intelligence group of VUB.

We offer the opportunity to work in a very inspired, motivated and enjoyable research group that is looking to expand. The focus is also not purely on academic aspects thanks to our industrial collaborations. On top of the meaningful academic and industrial experience , we encourage going abroad and presenting your work at international conference. Since this is a postdoc position, one of your responsibilities will also be to mentor and supervise PhD and master thesis students. You also need to be willing to help out in writing parts of or giving input for project proposals. It is also possible you will be given minor teaching tasks.

Entry requirements

Applicants should preferably have:

  • PhD degree in Mechanical, Electrical, Computer Science, or Mathematical engineering
  • A relevant Master’s degree and/or experience in one or more of the following would also be an advantage: wind turbine dynamics, signal processing, machine learning techniques, Bayesian statistics, ...
  • Background or interest in programming (Matlab, python, java, C/C++, …)
  • Proficiency in English is a plus

Interested candidates are recommended to apply as soon as possible.

Funding information

We offer an international open working environment stimulating personal development through international courses, many opportunities to attend and present at conferences abroad. Possibility to spend part of the research abroad. A generous competitive salary, public transport coverage and health insurance. The Postdoc position normally lasts at least 2 years, with potential extension.

Contact details

Mail to jan.helsen@vub.be

How to apply

All applications should be made through e-mail (jan.helsen@vub.be)