Atmopsheric Wind Tunnel at Ecole Centrale de Nantes / LHEEA, France

Description of facility

General description

Type:	Göttingen type wind tunnel
Size of test section:	2m x 2m x 20m (width x height x length)
Configuration:	Closed test section
Velocity range: Background Ti: Cooling:	up to 10m/s 1.2% No
Additional features:	Adjustable ceiling

Measurement equipment:

Pressure:	3 Prandtl tubes plus Furness pressure sensors Unsteady wall-pressure transducers (8 channels) Mean pressure transducers (96 channels).
Forces:	6 component unsteady force balance Drag balance (< 0.5N),
Velocity:	1 Cobra probe (3 velocity components) Hot-wire anemometry (hot-wires, X-wires), 2 DISA and 3Dantec MiniCTA 2D Low-frequency Laser Doppler Anemometry (2D LDA),

Stereo Particle Image Velocimetry (2D-3C PIV)

Additional equipment:

ABL conditioning:	Set of turbulence generators + perforated metal plates on	
	the floor + roughness elements	
Traverse:	1-axis traverse system ()	

Discs:

	Disc A	Disc B	
Solidity	57%	inhomogeneous	
Disc thickness [mm]	2	3.2	
Disc diameter [mm]	200 / 160	120	
Mast diameter [mm]	10	8	
Mast properties	smooth shaft smooth shaft		
Hub diameter [mm]	/ 10.8		
Material	Metallic mesh with a hole size of 2mm	Plywood	
	and wire diameter of 1mm		

Inflow conditions:

At the inlet plane (without modelled ABL) :

Mean velocity distribution (3-C) Turbulence intensity distribution (3-C) Turbulence spectrum within boundary layer (3-C)

At the Test section (with modelled ABL):

Mean velocity distribution (3-C) Turbulence intensity distribution (3-C) Turbulence spectrum within boundary layer (3-C) Integral length scale

If available references to publications regarding single topics from above.

- Wind Tunnel Study of a "Floating" Wind Turbine's Wake in an Atmospheric Boundary Layer with Imposed Characteristic Surge Motion. B Schliffke et al (2020) J. Phys.: Conf. Ser. 1618 062015
- Perret, L., Basley, J., Mathis, R., and Piquet, T. The Atmospheric Boundary Layer Over Urban-Like Terrain: Influence of the Plan Density on

Roughness Sublayer Dynamics. In:Boundary-Layer Meteorology (2018). doi : 10.1007/s10546-018-0396-9.

Website:https://lheea.ec-nantes.fr/test-facilities/test-facilities-for-micrometeorology-and-wind-engineering/atmospheric-wind-tunnel

Contact:

Name:	Dr. Boris Conan
Email:	boris.conan@ec-nantes.fr
Phone:	+33 (0)240 371 680